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1. INTRODUCTION

My research program explores relationships between the combinatorics and geometry
of flag varieties, Schubert varieties and Coxeter groups. For over a century, Schubert vari-
eties have been studied due to their rich combinatorial and geometric structures. Schubert
calculus in relation to enumerative geometry is the main focus of Hilbert’s 15th problem.
Today, the study of Schubert geometry and combinatorics remains a very active field of
mathematics and there are many open questions regarding Schubert varieties.

My research falls into three categories:

• The geometry and combinatorics of Schubert varieties: This research program
involves studying the combinatorial and geometric aspects of Schubert varieties. I
have worked on many projects which include the isomorphism problem on Schu-
bert varieties, studying fiber bundle structures, calculating the Nash blow-up,
and enumerating smooth/rationally smooth Schubert varieties. Other projects
include exploring the connections between Schubert varieties and permutation
pattern avoidance. More details on this research are given in Section 2.

• Schubert Calculus and its applications: This research program involves a va-
riety of different aspects of Schubert calculus. My work on this topic include
studying Schubert calculus for Kac-Moody flag varieties, exploring saturation
properties for T -equivariant cohomology, looking at recursive structures of the
Belkale-Kumar product and finding applications of Schubert calculus to problems
in frame theory and functional analysis. I have also studied non-commutative
Littlewood-Richardson coefficients which correspond to a non-commutative ana-
logue of Schubert calculus in the Grassmannian. More details on this research are
given in Section 3.

• Other research: I have also worked on several related research projects that fall
outside the two categories above. These include projects on the combinatorial
properties of Springer fibers, studying generating functions on intervals in Young’s
lattice, and developing algorithms to efficiently calculate the Demazure product
on permutations. More details on this work is given in Section 4.

2. GEOMETRY OF SCHUBERT VARIETIES

Let G be a Lie group over an algebraically closed field and let W denote the Weyl
group of G. A Schubert variety is the closure of a B-orbit (Borel subgroup-orbit) in the
flag manifold G/B. The Weyl group indexes these orbits, so for any w ∈ W , define the
Schubert variety

X(w) := BwB/B.
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The combinatorial properties of W are closely related to the geometry of Schubert va-
rieties. For example, the Poincaré series of X(w) is the rank generating function of the
Bruhat interval [e, w]. In the following sections, I describe several research projects on the
geometry and combinatorics of Schubert varieties.

2.1. The isomorphism problem. In [41], Slofstra and I consider the following classifica-
tion problem that is central to the field of algebraic geometry.

Question 2.1. When are two Schubert varieties are algebraically isomorphic?

We answer this question by defining the combinatorial notion of Cartan equivalence.
Given w,w′ ∈ W , a Cartan equivalence w ∼ w′ is a bijection between the support sets of
w and w′ that simultaneously matches the reduced word structure and Cartan data of w
and w′. We prove the following:

Theorem 2.2. [41, Theorem 1.3] The Schubert varieties X(w) and X(w′) are algebraically iso-
morphic if and only if there is a Cartan equivalence w ∼ w′.

One surprising consequence Theorem 2.2 is that isomorphism classes of Schubert va-
rieties in a given flag variety are governed by graph automorphisms of the underlying
Dynkin diagram. For example, if X(w) is fully supported of type An, then it is isomor-
phic to at most one other Schubert variety of the same type. This is due to the fact that the
type A Dynkin diagram is a path which has only one non-trivial graph automorphism.
Theorem 2.2 is versatile in the sense that it applies to the general class of Kac-Moody Schu-
bert varieties. It can also be used to compare Schubert varieties of across different types.
In [36], Tarigradschi, Xu and I give an analogous isomorphism criterion for cominuscule
Schubert varieties in terms of labelled posets.

2.2. Fiber bundle structures. Let P be parabolic subgroup of G. The projection map

π : G/B → G/P

gives a P/B-fiber bundle structure on the flag variety G/B. If WP denotes the Weyl group
P, then there is a unique parabolic decomposition of an element w = vu where u ∈ WP

and v is minimal length in the coset wWP . Restricting the projection π to the Schubert
variety X(w) yields the projection

π : X(w) → XP (v)

where the generic fiber is isomorphic to X(u). However π does not usually induce a fiber
bundle structure on X(w).

Question 2.3. When is π restricted to X(w) an X(u)-fiber bundle?

In [38], Slofstra and I answer this question with the following combinatorial character-
ization.

Theorem 2.4. [38, Theorem 3.3] The map π restricted to X(w) a X(u)-fiber bundle if and only
if u is maximal length in [e, w] ∩WP .

We say a parabolic decomposition w = vu is a Billey-Postnikov (or BP) decomposition if
w satisfies either condition in Theorem 2.4. BP decompositions have become an important
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combinatorial tool used to study not only Schubert varieties, but Coxeter groups, hyper-
plane arrangements, and permutation pattern avoidance. Oh and I have recently written
a survey article on BP decompositions and their applications in [30].

For rationally smooth Schubert varieties, Slofstra and I prove the following theorem.

Theorem 2.5. [38, Theorem 3.6],[40, Theorem 1.1] Let X(w) be a Schubert variety of finite
type or of affine type A. If X(w) is (rationally) smooth, then w has a BP decomposition with
respect to some maximal parabolic subgroup WP ⊂ W.

Moreover, if X(w) is smooth, then the morphism π : X(w) → XP (v) is smooth.

One immediate consequence of Theorem 2.5, is that a smooth Schubert variety in G/B
is an iterated fiber bundle of smooth Schubert subvarieties of generalized Grassman-
nian flag manifolds (G/P where P is maximal). This fact was previously known only
in type A [45, 47]. In [38, Theorem 3.8], we give a complete geometric description of
smooth Schubert varieties in G/B by classifying all smooth Schubert varieties in general-
ized Grassmannians. Another consequence is that we prove the Billey-Crites conjecture
in [11] which states that smooth Schubert varieties of affine type A correspond to affine
permutations avoiding patterns 3412 and 4231.

Our interest in fiber bundle structures of Schubert varieties has its origins in earlier
work where Slofstra and I study the combinatorics of Bruhat intervals [e, w] where w is an
element of some Coxeter group W . The property that a Schubert variety is smooth can be
replaced with the combinatorial notion that the Bruhat interval [e, w] is rank symmetric
with respect to length. In other words, the Poincaré polynomial

Pw(t) :=
∑

x∈[e,w]

tℓ(x)

is a palindromic polynomial. In [37], Slofstra and I show that much of the theory on BP
decompositions holds true for several families of Coxeter groups. For example, we prove
the following analogue of Theorem 2.5:

Theorem 2.6. [37, Theorem 3.1] Suppose W has no commuting Coxeter relations. If Pw(t)
is palindromic, then w has a BP-decomposition with respect to some proper maximal parabolic
subgroup of W .

We remark that Theorem 2.6 holds for right angled Coxeter groups as well. Theorem
2.6 allows us to construct a combinatorial “fiber bundle” structure on any Coxeter group
element with a palindromic Poincaré polynomial. One consequence is that the number of
elements for which Pw(t) is palindromic is finite for many infinitely large Coxeter groups
[37, Corollary 3.5]. For uniform Coxeter groups, we calculate the generating function for
the number of such elements in [37, Proposition 3.8].

2.3. Enumerating smooth Schubert varieties. In [39], Slofstra and I develop a model
we call staircase diagrams over a Dynkin graph which combinatorially encodes the fiber
bundle structures of a Schubert variety arising from Theorem 2.5. Our main applica-
tion is that we calculate the generating function for the number of smooth and rationally
smooth Schubert varieties of any classical finite type. This generating function was pre-
viously only known in type A and was computed by Haiman [12, 20]. Specifically, define
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generating series

A(t) :=
∞∑
n=0

an t
n, B(t) :=

∞∑
n=0

bn t
n, C(t) :=

∞∑
n=0

cn t
n, D(t) :=

∞∑
n=3

dn t
n, BC(t) :=

∞∑
n=0

bcn t
n,

where the coefficients an, bn, cn, dn denote the number of smooth Schubert varieties of
types An, Bn, Cn and Dn respectively, and bcn denotes the number of rationally smooth
Schubert varieties of either type Bn or Cn.

Theorem 2.7. [39, Theorem 1.1] Let W (t) :=
∑

nwn t
n denote one of the above generating

series, where W = A, B, C, D, or BC. Then

W (t) =
PW (t) +QW (t)

√
1− 4t

(1− t)2(1− 6t+ 8t2 − 4t3)

where PW (t) and QW (t) are polynomials given in Table 1.

Type PW (t) QW (t)

A (1− 4t)(1− t)3 t(1− t)2

B (1− 5t+ 5t2)(1− t)3 (2t− t2)(1− t)3

C 1− 7t+ 15t2 − 11t3 − 2t4 + 5t5 t− t2 − t3 + 3t4 − t5

D (−4t+ 19t2 + 8t3 − 30t4 + 16t5)(1− t)2 (4t− 15t2 + 11t3 − 2t5)(1− t)
BC 1− 8t+ 23t2 − 29t3 + 14t4 2t− 6t2 + 7t3 − 2t4

TABLE 1. Polynomials in Theorem 2.7.

In [40, Theorem 1.2], Slofstra and I prove an analogous result for the generating func-
tion of smooth Schubert varieties of affine type A. One surprising consequence of these
enumerations is that the asymptotic growth rate for the number of Schubert varieties is
the same for each of the classical Lie types.

2.4. Fiber bundle structures and pattern avoidance. For Schubert varieties of finite type
A, permutation pattern avoidance has been used to characterize many geometric proper-
ties. Most notably, Lakishmbai and Sandhya prove that a Schubert variety is smooth if
and only if its corresponding permutation avoids the patterns 3412 and 4231 [26]. Since
then, pattern avoidance has been used to characterize other properties such as being de-
fined by inclusions [18], factorial [13] and a local complete intersection [46]. These results
have been surveyed by Abe and Billey in [1]. In [2], Alland and I ask the following ques-
tion:

Question 2.8. Does the Coxeter theoretic condition for a fiber bundle in Theorem 2.4 have a
pattern avoidance characterization in type A?

We answer this question by developing a new notion of pattern avoidance called split
pattern avoidance. Let Fl(n) denote the complete flag variety on Cn and Gr(r, n) denote the
Grassmannian of r-dimensional subspaces of Cn. There is a natural projection map

πr : Fl(n) → Gr(r, n)

given by projection onto the r-th factor π(V•) := Vr. In this case, Schubert varieties X(w)
in Fl(n) are indexed by permutations.
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Theorem 2.9. [2, Theorem 1.1] Let w ∈ W be a permutation. The map πr restricted to X(w) is
a fiber bundle if and only if w avoids the split patters 23|1 and 3|12 with respect to position r.

One consequence is that we give a usual pattern avoidance characterization of Schubert
varieties with complete parabolic bundle structures.

Theorem 2.10. [2, Theorem 1.3] Let w ∈ W be a permutation. Then X(w) has a complete
parabolic bundle structure if and only if w avoids the patterns 3412, 52341, 635241.

In [19], Grigsby and I solve the corresponding enumerative problem on the split pat-
terns 23|1 and 3|12.

Theorem 2.11. [19, Theorem 1.2] Let k(r, n) denote the number of permutations of type An−1

that avoid 23|1 and 3|12 with respect to position r. Then

k(r, n) = r!(n− r)! +
r∑

i=r

n−r∑
j=1

(
n− i− j

r − i

)
· (r)i−1 · (n− r)j−1

where (m)i := m(m− 1) · · · (m− i+ 1) denotes falling factorial.

Grigsby and I also calculate the bivariate generating function of the values k(r, n) and
show that there is a nice connection with Bessel functions which are solutions to the Bessel
partial differential equation.

2.5. The Nash blowup of a Schubert variety. The Nash blow-up of a complex algebraic
variety is the parameter space of tangent spaces over its smooth locus together with the
limits of tangents spaces over its singular locus. One motivation for studying the Nash
blow-up is that its tautological bundle serves as an analogue of the tangent bundle for
singular varieties. The existence of such a blow-up has led to the development of a char-
acteristic class theory for singular varieties [28]. For Schubert varieties, these classes have
been extensively studied in [3, 4, 5, 22]. While the Nash blow-up is an extremely impor-
tant object in class theory, its geometry and combinatorics is poorly understood. In [42],
Slofstra, Woo and I calculate the Nash blow-up of cominuscule Schubert varieties and
show that the torus-fixed points of the Nash blow-up correspond to Peterson translates
of the inversion set. This work is inspired by earlier work by Carrell and Kuttler in [15]
where they define Peterson translation on T -stable varieties and use it to determine when
a T -fixed point in the Schubert variety is smooth.

Theorem 2.1. [42, Theorem 2.1] Let ∆, ∆P denote the set of simple roots for G and P respec-
tively and let X(w) be a cominuscule Schubert variety in G/P . Further assume that w in minimal
length in the coset wWP .

Then the Nash blow-up X(w) is a Schubert variety. In particular, it is algebraically isomorphic
to BwQ/Q for the standard parabolic subgroup Q ⊆ P , where Q is generated by the set of simple
roots

∆w := {β ∈ ∆P | w(β) ∈ ∆}.

Theorem 2.1 has many consequences. First, it immediately implies that the Nash blow-
up of X(w) is a normal variety. Second, we use this result to give a new characterization
of the smooth locus of X(w). For Grassmannian Schubert varieties (which are all comi-
nuscule), we determine when the Nash blow-up is a resolution of singularities. We also
show that the Nash blow-up is a fiber product of left-peak and right-peak Zelevinsky
resolutions.
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3. SCHUBERT CALCULUS

The goal of Schubert calculus is understand the product structure of various cohomol-
ogy theories of flag varieties and their generalizations with respect to a basis of Schubert
classes. Questions can either be geometric or combinatorial in nature. In this section, I
will discuss my research projects on Schubert calculus.

3.1. Grassmannian Schubert calculus and applications. This section is about two projects
involving Schubert calculus of the Grassmannian Gr(r, n) of r-dimensional subspaces in
Cn. The cohomology ring H∗(Gr(r, n)) has an additive basis of Schubert classes {σλ}λ∈Λ,
where Λ is the set of partitions whose Young diagrams are contained in an r × (n − r)
rectangle. For any three partitions λ, µ, ν ∈ Λ we can define the Littlewood-Richardson
coefficients cνλ,µ by the product structure constants

(1) σλ · σµ =
∑
ν∈Λ

cνλ,µ σν .

The Littlewood-Richardson coefficients arise in several fields of mathematics including
the representation theory of the general linear group, the combinatorics of symmetric
functions, and quiver representations.

One remarkable application of Littlewood-Richardson coefficients is to the eigenvalue
problem on sums of hermitian matrices. The following theorem is proved by the com-
bined works of Klyachko [23] and Knutson and Tao [24].

Theorem 3.1. ([23, 24]) The coefficient cνλ,µ > 0 if and only if there exist r× r hermitian matrices
A,B,C with eigenvalues given by the partitions λ, µ, ν and

A+B = C.

In joint work with Anderson and Yong [6], we are able to extend this result to the setting
of torus-equivariant cohomology of the Grassmannian H∗

T (Gr(r, n)). Define the structure
constants Cν

λ,µ by the product of equivariant Schubert classes

Σλ · Σµ =
∑
ν∈Λ

Cν
λ,µ Σν .

We have the following theorem (omitting some technical constraints).

Theorem 3.2. [6, Theorem 1.3] The coefficient Cν
λ,µ > 0 if and only if there exist r× r hermitian

matrices A,B,C with eigenvalues given by the partitions λ, µ, ν and

A+B ≥ C.

Here a matrix A ≥ B if A − B is positive semi-definite. Theorem 3.2 is proved by
showing that Horn’s inequalities, which determine when cνλ,µ > 0, also determine when
Cν

λ,µ > 0 in the equivariant setting. As a corollary, we get an equivariant generalization of
the celebrated saturation theorem.

Theorem 3.3. [6, Thoerem 1.1] Cν
λ,µ > 0 if and only if CNν

Nλ,Nµ > 0 for any N > 0.

Another application of Theorem 3.1 is to frame theory, an important topic in functional
analysis. Let P1, . . . , Pk be a sequence of N × N orthogonal projection matrices and let
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L := (L1, . . . , Lk) denote the corresponding rank sequence (i.e. rank(Pi) = Li). We say
that P1, . . . , Pk is a tight fusion frame if there exists a real number α such that

k∑
i=1

Pi = αIN

where IN denotes the identity matrix. Applications of fusion frames include sensor net-
works, coding theory, compressed sensing, and filter banks. In [14], together with Bownik
and Luoto, we address the problem of classifying all sequences L that are rank sequences
of some tight fusion frame. Since orthogonal projection matrices are hermitian, we use
Theorem 3.1 to prove the following classification.

Theorem 3.4. [14, Theorem 4.2] L = (L1, . . . , Lk) is a tight fusion frame sequence if and only
if

k∏
i=1

σ(NLi ) ̸= 0

in H∗(Gr(N,M +N)) where M :=
∑k

i=1 Li and the partition (NLi) := (N, . . . , N)︸ ︷︷ ︸
Li

.

This connection between frame theory and Schubert calculus yields many interesting
results in both fields of mathematics. For example, using Schubert combinatorics, we
produce new bounding estimates on tight fusion frames previously unknown in frame
theory. Conversely, inspired by dualities found in frame theory, we construct new combi-
natorial identities for Littlewood-Richardson coefficients.

3.2. Schubert calculus for Kac-Moody groups. In joint work with Berenstein from [9],
we study the Schubert calculus of the flag variety G/B corresponding to a Kac-Moody
group G. The structure of G is encoded by a generalized Cartan matrix (GCM), defined to
be a square matrix A = (ai,j) where ai,i = 2 and ai,j ∈ Z<0 if i ̸= j. Thus for each GCM,
we can associate and study the cohomology ring H∗(G/B).

Like the cohomology of the Grassmannian, H∗(G/B) has an additive basis of Schu-
bert classes indexed by W , the Weyl group of G. We define the structure constants cwu,v by
the product

σu · σv =
∑
w∈W

cwu,v σw.

In [9, Theorem 2.4], we give a formula for computing cwu,v in terms of the GCM A. This
formula is based on the work of Kostant and Kumar in [25] where they study nil-Hecke
rings corresponding to Kac-Moody groups. While other formulas for Schubert structure
constants exist (see [16]), it has been a long-standing open problem to find a formula that
is “combinatorially positive”. Although it is well known from the geometry of G/B that
the Schubert structure constants are non-negative integers, there are no known combina-
torial proofs of this positivity (except in a few very special cases). Our formula satisfies
the following property.

Theorem 3.5. [9, Theorem 2.16] If the GCM A = (ai,j) of G satisfies

(2) ai,jaj,i ≥ 4

for all i, j, then the formula for cwu,v given in [9, Theorem 2.4] is combinatorially positive.
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In other words, the formula we construct is completely algebraic and the proof of pos-
itivity does not rely on the geometry of G/B. The condition (2) is precisely the condition
that the Weyl group W has no braid relations or commuting relations as a Coxeter group.
Theorem 3.5 above and [9, Theorem 2.4] have both been extended to include Schubert
structure constants for the torus-equivariant cohomology H∗

T (G/B) in [9]. Recently, Zain-
oulline and I have written a survey article on nil-Hecke rings and their applications to
Schubert calculus [44]. This article is written at the generality of real reflection groups
acting on non-crystallographic root-datum which much of the algebraic theory still holds.

3.3. Recursive formulas for structure constants. Let P ⊆ Q be a pair of parabolic
subgroups of a complex Lie group G and consider the induced sequence of partial flag
varieties

Q/P ↪→ G/P ↠ G/Q.

When comparing the three flag varieties above, the variety G/P typically has the most
complicated cohomology structure. In [34, 35], I develop a recursive formula to com-
pute Schubert structure coefficients of H∗(G/P ) in terms of the simpler cohomology rings
H∗(Q/P ) and H∗(G/Q) under certain constraints.

Theorem 3.6. [35, Theorem 1.1] Let (w1, w2, w3) ∈ (W P )3 with parabolic decompositions
wi = viui with respect to Q. If the triples (w1, w2, w3) and (v1, v2, v3) satisfy a certain numerical
constraint, then

cw3
w1,w2

= cv3v1,v2 · c
u3
u1,u2

.

One important class of coefficients satisfying these constraints of [35, Theorem 1.1]
are coefficients cwu,v corresponding to Levi-movable triples (u, v, w) defined by Belkale and
Kumar [8]. In [32], Ressayre shows that the set of Levi-movable triples, with cwu,v = 1,
indexes the interior faces of the eigencone corresponding to the group G. By applying
the recursive formula [35, Theorem 1.1] to Ressayre’s work, I am able to determine the
inclusion relations of the faces of the eigencone.

In [33], Ressayre and I generalize the notion of Levi-movability to the setting of
“branching Schubert calculus”. Branching Schubert calculus refers to the problem of com-
puting the comorphism on cohomology rings induced from an equivariant embedding of
one flag variety into another. If we consider the diagonal embedding of a flag variety
into two copies of itself, then the comorphism on cohomology is simply the cup prod-
uct. Hence, branching Schubert calculus is a generalization of usual Schubert calculus.
We use the generalized definition of Levi-movable to give a more elegant solution to the
branching eigenvalue problem.

The main idea behind the proof of the recursive formula [35, Theorem 1.1] and its
various applications to Levi-movability is to use the fact that Schubert structure coeffi-
cients count the number of points in the intersection of corresponding sets of Schubert
varieties in general position. Since this intersection is transverse, we can apply tangent
space analysis.

3.4. Noncommutative Littlewood-Richardson coefficients. For any composition α, let
sα denote the noncommutative Schur function as defined in [10]. The noncommutative
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Littlewood-Richardson coefficients Cγ
α,β are defined as the structure coefficients of the prod-

uct
sα · sβ =

∑
γ

Cγ
α,β sγ

in the algebra of noncommutative symmetric functions. Bessenrodt, Luoto and vanWilli-
genburg prove in [10] that the coefficients Cγ

α,β are nonnegative integers and are refine-
ments of classical LR coefficients. More precisely, [10, Corollary 3.7] states for any com-
positions α, β with underlying partitions shapes λ = α̃ and µ = β̃, we have

cνλ,µ =
∑
γ̃=λ

Cγ
α,β.

Note that these classical coefficients are the same those that the determine the Schubert
calculus of the Grassmannian given in Equation (1). Combinatorially, it is well known that
the coefficient cνλ,µ counts the number of LR skew-tableaux of shape ν/λ with content µ.
Let LRT(λ, µ, ν) denote the set of such tableaux. In [43], Tewari and I prove the following
decomposition theorem.

Theorem 3.1. Given compositions α and β such that λ = α̃ and µ = β̃, there exists a natural
decomposition

LRT(λ, µ, ν) =
⊔
γ̃=λ

Xγ
α,β

such that |Xγ
α,β| = Cγ

α,β .

Theorem 3.1 is a tableaux analogue of Equation (3.4). To determine if a tableaux belongs
to Xγ

α,β , we apply a sequence of crystal reflection operators corresponding to a reduced
word of a permutation σ such that σ · λ = α. We then apply Mason’s map indexed by β
which reveals a composition shape γ [29]. The set Xγ

α,β is defined as the set of LR skew
tableaux whose image under this process yields the shape γ.

4. OTHER RESEARCH PROJECTS

The following are some additional research projects I have recently worked on.

4.1. Cohomology of Springer fibers. In [31], Precup and I study the geometry and topol-
ogy of Springer fibers. In particular, we construct a T -equivariant analogue of the Garsia-
Procesi (GP) basis for the cohomology of Springer fibers given in [17]. We call this new
basis the equivariant Springer monomials. The main application of this basis is that it pro-
vides a combinatorial framework to make calculations in cohomology of the Springer
fiber. For example, we compute the pull back of a Schubert class in the cohomology. As
a consequence, we show that there always exists a successful game of Betti poset pin-
ball for type A Springer fibers. Existence of such games was questioned by Harada and
Tymoczko in [21].

4.2. Intervals in Young’s lattice. In [7], Azam and I study lower order ideals in Young’s
lattice on partitions. Consider the polynomial

Pλ(y) :=
∑
µ≤λ

y|µ|
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where |µ| denotes the size of µ. Topologically, Pλ(y) is the Poincaré polynomial of the
Grassmannian Schubert variety X(λ). Define the generating function

Qk(x1, . . . , xk, y) :=
∑

λ∈Λ(k)

Pλ(y) · xλ1
1 xλ2

2 · · ·xλk
k

where Λ(k) denotes the set of partitions with exactly k parts. Azam and I prove the
following theorem:

Theorem 4.1. The function Qk is a rational function in the variables x1, . . . , xk, y.

One application of Theorem 4.1 is that we can compute the growth rate of the coeffi-
cients at various deformations of Qk. For example, we show that the generating function
Qk(x, . . . , x, 1) only has singularities of modulus one and hence the corresponding coeffi-
cients have polynomial growth. These coefficients correspond to the “average size” of a
lower order ideal in Young’s lattice.

4.3. Demazure products and hopping. Given a Coxeter system (W,S), the Demazure
product ⋆ is defined as the Coxeter moniod structure derived by replacing the nil-relation
s · s = e by the relation s ⋆ s = s for s ∈ S. This product arises naturally in study of Hecke
algebras and their corresponding Lie groups. For example, if W is the Weyl group of a
reductive group G, then the Borel orbit relations are given by

BwBuB = B(w ⋆ u)B.

In [27], together with Li, Oh, Yan and You, we study the Demazure product on permu-
tations. Our main result is an efficient algorithm for calculating the Demazure product
using only the one-line notation of permutations. To describe this algorithm, we define
a new operator called a hopping operator on permutations. We also extend our hopping
algorithm to the group of signed permutations which are Coxeter groups of type B/C.
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